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Some Formulas for Use with Bayesian Ability Estimates

Abstract

Relationships between Bayesian ability estimates and the parameters

of a normal population distribution are derived in the context of classical test

theory. Analogues are provided for use as approximations in work with

item response theory. The following questions addressed:

What is the relationship between the distribution of the latent ability

variable in a population, and the distribution of ability estimates?

Because calculating Bayesian estimates typically requires knowing

the population distribution, how should one proceed if it is not

known?

What if Bayesian ability estimates have been calculated in

accordance with a common population distribution, but it is later

desired to estimate the distributions of specified subpopulations?

Key words: Bayesian estimation, classical test theory, item response theory



Some Formulas for Use with Bayesian Ability Estimates

Introduction

From the time of Truman Kelley (1923), Bayesian ability estimates have often been

used in educational testing. Reasons for doing so range from Novick's theoretical

arguments for Bayesian inference in general (e.g., Novick and Jackson, 1974) to a more

practical desire to obtain finite ability estimates for all examinees in the context of item

response theory (IRT). This paper provides some formulas for practical work with

Bayesian ability estimates, focusing on the following questions:

1. What is the relationship between the distribution of the latent ability variable in a

population and the distribution of Bayesian ability estimates?

2. Because calculating Bayesian estimates typically requires knowing the population

distribution, how should one proceed if it is not known?

3. What if Bayesian ability estimates have been calculated using a common population

distribution, but it is later desired to estimate the distributions of specified

subpopulations?

Exact relationships are derived to address these questions in the context of classical

test theory, assuming normally distributed abilities and errors. Analogues are offered as

computing approximations in a not-uncommon IRT context: A researcher has software to

calculate Bayesian IRT estimates for individuals under the assumption of a normal

population distribution, but possesses neither values of the population parameters nor

software with which to estimate them.

Classical Test Theory

Background and Notation

The symbol 6 denotes a real-valued latent proficiency variable, assumed to follow

a normal distribution in a population of examinees; that is,

01p,a2 N(p,a2) (1)

Under classical test theory (C11) one observes the value of the manifest variable x , which

is the sum of the latent variable and an independent, real-valued error or disturbance term e:

6
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x = 0 + e .

If normality is assumed for the error terms,

e N(0, a:).

Equivalently, the conditional distribution of x given ()can be written as

xl O N(0, o-:).

Together, Equations 1 through 3 imply that

(2)

(3)

(4)

Olg , a'2, a: cr2 + a:). (5)

When an individual's x is observed, Equation 4 is interpreted as a likelihood

function for the unobserved 0, denoted 1(01x). Under the assumptions outlined

previously,

1(61x) = N(x,cr:) , (6)

a normal distribution with mean x and variance a:. The maximum likelihood estimate

(NILE) of an examinee's O , denoted 6, is therefore simply x in this context, and the
estimation error variance is a..2.

a2) is the prior distribution for an examinee's ()value under CIT. It
represents what is known about 0 before a test score is observed. Suppose p, a2, and a:

are known. The posterior distribution for an individual's 0 after observing x is obtained by
Bayes theorem as p(61x,p, a2, a) « I(Olx) p(01/.1, a2). If nonr.ality is assumed for e and

0, then the posterior is also normal:

with (posterior) variance

el X,p, Ce, Cf N(9,73-.2),

-62 ...(a_2 +0.72)-1

(1p)a2,

where p is the reliability coefficient, defined by
'1
I

(7)
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C72

= px + (1- Ai

0 srr:= ce e.

(8)

(9)

(see Box and Taio, 1973, pp. 74-75, for a proof). Equations 7 and 9 are familiar as

Kelley's (1923) formulas. 8 is the Bayes mean, or expectation a posteriori (EAP),

estimate of 0 for an examinee with observed response x. Because the posterior is normal,

is also the Bayes modal estimate for 0, or the mode of its posterior.

Question 1: What is the relationship between the distribut;on of the latent
ability variable in a population, and the distribution of ability
estimates?

Because the bottom line in test theory is usually inference about individual

examinees, attention has focused on obtaining scores for individuals that are optimal in one

sense or another. MLEs are consistent and best asymptotically normal estimatesof

individuals' Os; Bayesian estimates minimize the average squared difference between

estimates and true values. A fundamental paradox of te,,i theory is that the distribution of

these "good" estimates of individuals' Os is ad a good estimate of the 0 distribution (Lord,

1969; Mislevy, Beaton, Kaplan, and Sheehan, 1992). In the CTT setting described above,

both MLEs and Bayesian estimates follow normal distributions. Their means are equal to

the mean of 0 in the population, but their variances are not equal to the variance of 0 :

For MLEs,

E(e) = E(x)

but

Var(e) = Var(x) = a2 +

For Bayesian estimates,

(10)
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E(8). E[px + (1- Ali

= pE(x) + (1- p)E(it)

=pµ + (1- P)11
=

Var(8) = Var[px + (1- p)/.11

= p2Var(x)
p2(02 ce)

= PCI2

(12)

(13)

The decomposition of variance implied by Equations 7 and 13 should be noted: the variance

of 0 can be expressed as the sum of the posterior variance (which is the same for all

examinees under Cr!') and the variance of the Bayes mean estimates:

Var(0)= E[Var(014 + Var[E(01x)]

= Var(81x)+ Var(e)

= (lP)a2+Pa2
= a2. (14)

From Equation 11, the variance of MLEs is an overestimate of the variance of O.

From Equation 13, the variance of Bayesian estimates is an underestimate. In both cases,

estimating a2 from the variance of a large sample of individual estimates requires

adjustments. With MLEs, the adjustment implied by Equation 11 is

02 = Var(e) CY:

if an estimate of a:. is available, or, equivalently,

a2 pVir(0)

if an estimate of p is used. With Bayes mean estimates, Equation 13 implies

a2 Var(e)/p.

(15)

(16)

(17)
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Question 2: Because calculating Bayesian estimates typically requires
knowing the population distribution, how should one proceed
if it is not known?

Bayesian estimates under the normal-distribution cTr case require the structural
parameters it, cr2, and a:. If these are not known, they can be approximated in familiar

ways: Equation 10 for an estimate of p, an internal consistency estimate for p, then
Equation 16 followed by Equation 8 for estimates of a2 and a:. This section derives an

alternative approach that lends itself better to an IRT analogue. The basic idea is first to

construct Bayesian estimates for 8s by using provisional values for it and a2, and then to

employ the mean and variance of the resulting estimates to obtain improved values for At

and a2. These values can be used in turn to construct improved estimates for individual

examinees.

The provisional values for it and a2 may be denoted by it* and a *2. Assuming
to be known, one defines the following quantities:

and

a*2
P *2 +02

(3*=p*x +(l-p*)p*.

The expected mean and variance of 14* in the population of examinees, denoted

subsequently as M and S2, are derived as follows:

M *)

= E[p * x + (1- p*)it *1

=p*E(x)

=p*p+(l-p*)p*

and

I"

(18)
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S2 a Varre*)

= Varip* x + (1- p *)p

= p *2 Var(x)
*2 (0.70 cr2).

Given (estimates of) M and S2, one can then solve for p and& in terms of known

quantities:

and

Page 6

(19)

= [Al (1 P *)11 P * (20)

0-2 = S2/P *2

These relationships require the existence of the moments that are involved, but not

normality.

(21)

Question 3: What if Bayesian ability estimates have been calculated in
accordance with a common population distribution, but it is
later desired to estimate the distributions of specified
subpopulations?

Bayesian ability estimation can combine examinees' observed scores with

information from other sources, such as a subpopulation membership. Suppose, for

example, that the distributions of girls and boys are li(ps,a:,) and N(pb,ce.,)

respectivelynormal, with a common within-group variance. If p: > pb , then the Bayes

estimate for a girl with a given observed score will be higher than that of a boy with the

same score. This might be the way to bet, but it is not the way to run a fair contest, such as

awarding benefits to individuals. If Bayesian estimates are to be used at all in such a

situation, they should be calculated with the same prior distribution for all examinees, so as

to preserve rank orderings. But if individual Bayesian estimates based on a common prior

are cz Aculated for such purposes, it follows from the preceding section that they will yield

biased estimates of subpopulation characteristics when analyzed as if they were true Os.

Specifically, the overall population mean and variance play the role of p* and o' *2 in the

preceeding section; the actual mean and variance of a subpopulation of interest correspond

to p and 472; and the resulting biased estimates correspond to M and S2.

11
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As an illustration, the running example of girls and boys is continued. It is

assumed that both subpopulations are of equal size, and that A denotes the mean difference
J.t, pi,. The overall population mean and variance are

A = (P-: -1- Ai,)/2

a2 = A2/4+ 0-!.

and

Although the population is actually the mixture of two normals rather than normal itself,

Equations 7 through 9 might be employed to approximate the posterior mean and variance

for each individual boy and girl. The mean of these Bayes mean estimates for girls is

obtained via Equation 18 as a weighted average of the correct value, ,ug, and the overall

mean, A :

Mt = E(O*I girl) = + (1 p)A.
(22)

Equation 22 shows that the degree of bias depends on p. An improved estimate of the true

girls' ri ean can be based on Equation 20:

= [M (1 1))11] 1 P.

Item Response T:.:.ory

The essential ideas of IRT are that the probabilities of multiple responses from an

examinee are driven by an unobservable proficiency variable 0, and that responses are

independent given O. The 2-parameter logistic IRT model for binary (correct/incorrect) test

items, for example, gives the probability of a correct response to Item j as the following

function of 9:

13(xi =110,ai,bi)= bi)],
(23)

where 'I' denotes the logistic distribution function, 'I'(z) = [1+ exp(z)r; a value of 1 for xi

means "correct" and 0 means "incorrect;" and aj and bi are parameters of Item j, indicating

its sensitivity and difficulty. It is assumed in this presentation that item parameters are

known. In practice, of muse, they must be estimated. The interested reader is referred to

Tsutakawa and Johnson (1990) for one technique for taking uncertainty about item

1_2
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parameters into account when estimating 0. If the item parameters are estimated accurately,

however, this source of uncertainty can be ignored.

Under the usual IRT assumption of conditional, or local, independence, the
probability of a vector of responses x =(x1,...,x.) to n items is a product of terms over

items:

P(xl 0) = npior
J=1

where Pi(0) EF:-.P(xj = lie) and Qi(0) Pi(0) = 13(xi = 010).

Ability Estimates for Individual Examinees

(24)

After x has been observed, Equation 24 is interpreted as a likelihood function

t(6lx), and serves as a basis for estimating O. The maximizing value, again denoted 0, is

the MLE. For samples of x with fixed 0 and large n, 8 is approximately normally

distributed:

(25)

where the estimation error variance is approximated by the reciprocal of the information

function, Ie:

P; (0)

19 Pj(8)Qi(e)'
(26)

with Pi (0) denoting the second derivative of Pj(0) with respect to O. It should be noted

that in contrast to the CIT setting, the sampling variance of the MLE depends on the value

of 0. In practice, estimated standard errors are often obtained by evaluating Equation 26

with the 0 that corresponds to an examinee's x. Their squares, estimated error variances,
may be denoted by Large-sample properties offer no guarantee of distributional

properties of 8 when n is small, however, and even 80 items can be "small in unfavorable

circumstances:

The likelihood functions under the one-, two-, and three-parameter logistic IRT

models have no finite maxima if all the responses are correct or all are incorrect.
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The likelihood functions under the three-parameter models have no finite maxima

for many response patterns with few correct responses, in comparison with the sum

of the lower-asymptote item parameters.

Even when finite maxima exist under the three-parameter model, likelihood

functions can be decidely non-normal---often skewed right, sometimes multimodal

(Yen, Burkett, and Sykes, 1991).

Even when likelihoods are roughly normal, the value provided by Equation 26 may

not be a good approximation of the inverse of the sampling variance of O.

As in CTT, Bayesian IRT estimates of 0 are obtained via Bayes theorem as

measures of center tendency in the posterior distribution, namely p(01x) a /(0(x) p(0).

Bock and Mislevy (1982) outlined numerical approximations for Bayes mean estimation in

the context of IRT. One calculates the values of /(01x) and p(0) at each point along a grid,

takes the products at each point, and rescales the results to sum to one. This procedure

yields a discrete approximation of the (possibly quite non-normal) posterior p(OIx). Its

mean and variance are obtained by formulas for weighted means and variances, with the

points in the grid serving as observations and their respective posterior probabilities as

weights. The resulting Bayes mean estimates and posterior variances, 0 and TT!, can be

approximated as accurately as desired by spacing the grid points closely enough, and the

circumstances described previously that plague maximum likelihood estimation present no

such problems. The relevant formulas are shown below, with the grid points denoted Om,

for m=1,...,M:

and

p(0,lx). i(xlem)p(o.) /Et(xies)p(03),

e = Eemp(emix),

Qx = E(0.--6)2p(0.14

(27)

(28)

(29)

If p(0) were normally distributed, as in Equation 1, and if an asymptotic normal

approximation could be obtained for 0 via Equation 25, an examinee's Bayesian mean

1'
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estimate and posterior variance could be approximated by revising Equations 7 through 9 as

follows:

with

and

Olx,p,o2 N(9:Cr:),

= Are + (1- Mg.

(30)

(31)

(32)

(33)

The preceeding formulas apply as approximations for those examinees with

response patterns yielding finite values for 0 anda.:. Were this the case for all response

patterns in a data set, one could calculate the average error variance, and then apply the

formulas in the CTT sections to approximate population and subpopulation parameters.

For examinees infinite MLEs, however, Equations 30 through 33 cannot be applied.

Because Bayesian estimates can be obtained for all patterns, however, it may be useful to

use them as the basis for approximating for the population mean and variance. To motivate

the approximations, direct maximum likelihood estimation of population parametersthat

is, bypassing the step of estimating individuals' Os is first reviewed.

Estimates for Population Parameters

The expression X=(xi,...,xN) may be used to denote the response vectors from a

sample of N examinees. If 0p(01a), where a is the possibly vector-valued parameter of

the distribution, the maximum likelihood estimate of a is obtained by maximizing the

marginal likelihood function

t(XI a) = jp(x,10)p(Ola)de. (34)
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One obtains the maximum by setting to zero the first derivatives of the natural logarithm of

Equation 34 with respect to each of the elements of a, and then finding the values that

solve these resulting likelihood equations (Mislevy, 1984). If p(61a) is the univariate

normal density, for example, then cf(j.t,o2). Whether or not normality is assumed for the

()distribution, the maximum likelihood estimates of the population mean and variance can

be written in terms of the posterior means and variances of the individual examinees:

and

ii.EE(61x«)

= Evar(eix + N-1E{E(01xi,a) fir

= s -1ti ,2 + V-1 Ere: fir .

(35)

(36)

That is, the MLE of Ai is the mean of the Bayesian estimates of the examinees, and the MLE

of ct2 is the sum of the posterior variances and the variance of the posterior means

provided that they were calculated with the correct mean and variance at the start. The

results specialize to Equations 12 and 14 in the case of CIT. Mislevy (1984) shows how

this property of "self-consistency" lies at the heart of estimating a by means of Dempster,

Laird, and Rubin's (1977) EM algorithm .

Approximations Based on Bayesian Estimates

One can begin with an provisional approximation for p(6), which may, but need

not be, normal. Initial values for the mean and variance may be denoted by j.t* and a*2.

An improved approximation of it and a2 is obtained by modifying the CTT correction

formulas as follows:

1. Obtain Bayes mean estimates and posterior variances, and 17;2, i=1,...,N, for all

examinees.

2. Calculate M and S2, the sample mean and variance of the s.

3. Calculate the average of the individual examinees' posterior variances:
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1=12 _1 2
Q = N

(37)

4. Calculate a psuedo-average error variance, analogous to a,2, in the CIT solution:

2 ("jr"2 4,-2 11

5. Calculate a psuedo-average reliability coefficient:

0.*2

P* = 2a* 04:2 .

(38)

6. Apply Equations 20 and 21 to obtain improved approximations of It and 02.

Analogous formulas can be used to approximate subpopulation means and

variances when a common mean and variance was used to generate the original set

of estimates for individuals.

A Numerical Illustration

This example is based on the responses of 325 students to a 19-item test. The items

were open-ended, and the two-parameter logistic model was fit to the data with Mislevy

and Bock's (1983) BILOG program. The scale was set so that the mean and variance of

the sample were 0 and 1 respectively. The approximation formulas of the preceeding

section were employed, starting from values for it* of 1, 0, and 1, crossed with values

for a *2 of .25, 1, and 4. From the resulting improved estimates in each combination, a

second approximating step was then carried out. The results are shown in Figure 1.

[ Figure 1 about here ]

Each panel in Figure 1 contains the following values:

Provisional estimates at the start of an approximation cycle, it* and a*2. With

these, Bayesian posterior means and variances were calculated for all examinees

using BILOG.

Intermediate calculations M, S2, p*, and ar, which are functions of p* and a:2

and the estimates of provisional posterior means and variances for individual

examinees based on /./* and a: 2.
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The resulting updated estimates f. I. and 62.

The center panel starts from, and returns to, the MLE values of 0 and 1. The panels

around the perimeter correspond to initial values for p of -1, 0, or 1, and for initial values

for a *2 of .25, 1, or 4. The resulting improved estimates were used in turn for a second

adjustment cycle, summaries of which appear in the panel closer next to the center.

Although this example is meant to be illustrative rather than comprehensive, some

tentative observations can be made from the results. In each case, a single adjustment step

produced an accurate estimate of the mean. Even from the initial approximations farthest

from the correct value, a single step would have been sufficient. The adjustments also

improved the estimates of the population variance in each case, but not by as much

(although it may be noted that the results are given in terms of variances rather than

standard deviations; standard deviations are off by only about 5-percent). Unless initial

approximations are fairly accurate, it would appear prudent to carry out at least two adjust

steps in order to obtain a satisfactory approximation of the variance.
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